skip to main content


Search for: All records

Creators/Authors contains: "Skinner, Matthew M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objectives

    The taxonomic status of isolated hominoid teeth from the Asian Pleistocene has long been controversial due to difficulties distinguishing between pongine and hominin molars given their high degree of morphometrical variation and overlap. Here, we combine nonmetric and geometric morphometric data to document a dental pattern that appears to be taxonomically diagnostic amongPongo. We focus on the protoconule, a cuspule of well‐documented evolutionary history, as well as on shape differences of the mesial fovea of the upper molars.

    Materials and methods

    We examined 469 upper molars of eight hominid genera (Australopithecus,Paranthropus,Homo,Meganthropus,Sivapithecus,Pan,Gorilla, andPongo), including representatives ofHomo erectusand extinct and recentPongo. Analyses were conducted at the enamel‐dentine junction to overcome the limitations introduced by dental wear.

    Results

    We found that a moderate or large protoconule is present in ~80% of Pleistocene and extantPongo. Conversely, a moderate to pronounced protoconule in hominins,Meganthropus, and African great apes occurs in low frequencies (~0–20%). Canonical variate analyses for the mesial fovea show that Pleistocene and extantPongocluster together and are clearly differentiated from all other groups, except forSivapithecus.

    Discussion

    This study suggests that the protoconule and the shape of the mesial fovea in upper molars are useful features for the taxonomic identification of isolated hominid teeth. By identifying these new features, our results can contribute to the better understanding of hominoid evolutionary history and biogeography during the Asian Pleistocene. However, we emphasize that the reported features should be used in combination with other diagnostic variables for the most accurate taxonomic assessments.

     
    more » « less